This is the first in a series of picture books that I plan to create for educational purposes. All images in this volume were created using the program NanotubeModeler from JCrystalSoft. A free version of this program can be downloaded at www.jcrystal.com. My earliest implementation of routines for the creation and visualization of nanotubes and nanocones was realized in JSV (Java Structure Viewer), a program which I wrote while working at NIRIM in Japan. Later I wrote a Java Applet version on the request of Dr. Jeremy Sloan. This year I finally wrote NanotubeModeler as a stand-alone Windows application on the request of my former colleague Dr. Paul Dennig who is now working for Ahwahnee Technology. The nano-geometries are created by first generating a flat graphene sheet and then rolling it into a tube or a cone. Two types of nanotubes can be capped with parts of the well-known Buckyball ($C_{60}$). These are the \{5,5\} and the \{9,0\} tubes, which have a suitable diameter of about 6.9 Å. Nanotubes are identified by their chiral indices \{m,n\}. One distinguishes between armchair structures (n=m), zig-zag structures (n=0) and chiral structures. Nanocones are characterized by the disclination angle, which corresponds to the part that is removed from the flat sheet before rolling it into a cone.
Capped \{5,5\} Tube

Carbon Nanotube
Armchair structure with Bucky-ball caps
Capped \{5,5\} Tube

Carbon Nanotube
Armchair structure with Bucky-ball caps
Length $\sim 25\ \text{Å}$, Diameter $\sim 6.75\ \text{Å}$
Capped \{9,0\} Tube

Carbon Nanotube
Zigzag structure with Bucky-ball caps
Capped \{9,0\} Tube

Carbon Nanotube
Armchair structure with Bucky-ball caps
Length \(~25\,\text{Å}\), Diameter \(~6.99\,\text{Å}\)
Inside a capped \{9,0\} nanotube
A Buckyball, the well-known Fullerene with icosahedral symmetry. Two different sections of the Buckyball can be used to cap the \{5,5\} and \{9,0\} nanotubes.
{10,0} Nanotube

Zig-zag structure
Length ~19 Å, Diameter ~7.77 Å
{10,10} Nanotube

Armchair structure
Length ~25 Å, Diameter ~13.465 Å
Zig-zag structure
This sheet can be rolled into a \{10,0\} nanotube
\{10,10\} Graphene Sheet

Armchair structure
This sheet can be rolled into a \{10,10\} nanotube
Chiral Boron-Nitride nanotube
Length $\sim 30$ Å, Diameter $\sim 13.26$ Å
{14,5} BN-Sheet

Chiral structure
This sheet can be rolled into a \{14,5\} nanotube
Inside a bent \{14,5\} nanotube
MWCNT

A multi-walled carbon nanotube (MWCNT)
\{7,0\}, \{10,0\}, \{13,0\} and \{16,0\} tubes
A bundle of seven \(\{7,0\}\) single-walled carbon nanotubes (SWCNT)
A bundle of seven \{7,3\} nanotubes
Inside \{5,3\} Nanotube

Looking inside a bundle of \{5,3\} nanotubes
Disclination angle 60°
Cone height 20 Å
Disclination angle 60°
Creates a cone of height 20 Å
Disclination angle 120°
Cone height 30 Å
Disclination angle 120°
Creates a cone of height 20 Å
180° - Nanocone

Disclination angle 180°
Cone height 30 Å
Disclination angle 180°
Creates a cone of height 20 Å
240° - Nanocone

Disclination angle 240°
Cone height 30 Å
Disclination angle 240°
Creates a cone of height 30 Å
Disclination angle 300°
Four cones of height 30 Å
Disclination angle $300^\circ$
Four cones of height $40 \: \text{Å}$
Nanocone Stereo Pair

Disclination angle 240°, Cone height 20 Å, Stereo view (relaxed-eye view)
This image was created with JPOWD from MDI (www.materialsdata.com)
Nanotube Stereo Pair

A bent capped \{5,5\} nanotube in stereo view (relaxed-eye view). This image was created with JPOWD from MDI (www.materialsdata.com)
I have tried to implement the geometry-generating routines to the best of my knowledge. However, errors in my computer programs may sometimes occur. If you think you found an error please let me know so I can fix it. Please feel free to contact me with suggestions for improvements and additions to these picture books.

You may contact me via email at: steffenweber@comcast.net

You may also visit some older galleries of mine at:
jcrystal.com/steffenweber/gallery/Nano Tubes/Nano Tubes.html
jcrystal.com/steffenweber/gallery/Nano Tubes/Nano Cones.html

- This Volume Ends Here -